

Darfur Cookstoves
Project
Final Report
5/10/06

Jesse Woo, Charles Kirubi, Susan Amrose, and Teddy Kisch

Latest Events in Darfur

(3/8/06) 30,000 march in Khartoum opposing UN involvement.

(3/10/06) UN decides to take over peacekeeping in Darfur.

Firewood patrols one of the heaviest security operations in Darfur (>3000 IDPs gather firewood/week)

Fuelwood scarcity becoming unbearable – new challenge from UN officers to find alternative fuel (beyond our scope)

Update on Darfur Conflict continued...

- 4/28/06 UN World food program cutting rations *in half* (due to lack of funds).
- 4/30/06 thousands march in Washington D.C., Golden Gate Bridge (we were there!)
- 5/1/06 Latest peace talks fail deadline extended to Thursday

Our Goals

Optimum:

- 1) Modify the Tara cookstove to make it STABLE (ie., not prone to tip over) during the vigorous stirring of assida in round-bottom traditional pot.
- Modify the Tara cookstove to that it retains HIGH FUEL EFFICIENCY IN WIND as most cooking is done in the open.

Final design should be *low cost*, easy to make in Darfur, and increase relative *fuel efficiency*.

Minimum: one of the two above

Methods - I

Brainstorm stove design

- low cost, no moving parts

Methods - II

• Fabricate a model of the stove design

Assida Pot

Mulah pot

Methods II (continued)

- Brackets reduced sink mullah pot inside
- Wind collar added to the top to prevent breeze interfering with heat transfer
- Bottom vents redesigned to reduce impact of breeze on heat transfer

Methods - III

- Electric Range Test to develop mullah protocol
- Gas Stove- can control flames
- Confirm the chemical process while frying onions
 - Test establishes 'elbow', the point where the heat has evaporated the water and is dramatically increases temperature

Methods – IV

Establish protocol for testing relative

efficiency

Assida: water boiling test

-Bring to boil, simmer 15 min

Mulah: onion frying test

- Bring onion/oil mix to 120C

For both tests, compare the wood used for original and modified stoves, with and without a breeze

On the learning curve...

Our results were affected by

- Fire tender -- I.e., the cook
- Doubling up running two stoves at once
- Ambient breeze
- Size and age of chopped onions

Onion-frying Test Results

Mulah with modified and unmodified Tara Stove

Calculations

Increased fuel savings = [W (unmodified) – W (modified)] / W (unmodified)

Conclusions:

- 40% relative fuelwood savings for Mulah in still air!
- 57% relative fuelwood savings with a breeze!

Test Results cont'd: Mulah without wind

	Unmodified Tara		Modified Tara		
Test Date	Time- reach 120C	Fire wood used (g)	Time - reach 120C	Fire wood used (g)	Relative Firewood Savings [Wood (unmodified) - Wood (modified)] x 100/[Wood (unmodified)] *
3/10/06		171		106	38.01%
3/14/06		302		122	59.60%
4/4/06	23 min	201	17 min	107	46.77%
4/15/06	20 min	215	12 min	132	38.60%
4/18/06	31 min	229	17 min	156	31.88%
4/24/06	35 min	321	32 min	236	26.48%
	•			Mean	40.22%

Mean 40.22%

Standard

Deviation 11.70%

40.22% relative firewood savings!

Test Results cont'd: Mulah Test with wind

	Unmodified Tara Fire		Modified Tara		
Test Date	Time- reach 120C	wood used (g)	Time- reach 120C	Fire wood used (g)	Relative Firewood Savings
4/17/06	21 min	354	8 min	175	50.56%
5/1/06	14 min	357	12 min	152	57.42%
5/1/06		313		120	61.66%
				Mean	56.55%
				Standard Deviation	5.60%

56.55% relative firewood savings!

Water Boiling Test Results

Assida with modified and unmodified Tara Stove

NO WIND

4/15	9.21%
4/18	10.09%
4/26	5.69%
Mean	8.33%
StdDev	2.33%

WIND 6 MPH				
4/30	79.73%			
5/3	68.88%			
Mean	74.30%			
StdDev	7.67%			

Conclusions:

- Minor fuelwood savings in still air (only 8%) due to poor fit of the large assida pot; hard to fit different pots on one stove top
- 75% fuelwood savings in presence of breeze!

Test Results Summary

Our Modifications work! Improvements over Standard Tara in plain text; savings over a three-stone fire in bold text:

- Mulah
 - 40% fuel savings in still air (~70% savings over a three stone fire)
 - 57% fuelwood savings in a strong breeze (~80% savings over a three stone fire)
- Assida
 - 8% fuelwood savings in still air (~55% savings over a three stone fire)
 - 75% fuelwood savings in a strong breeze (~88% savings over a three stone fire)

Stability?

- The current stove design lacks stability
- In Dr. Gadgil's November visit, the pot easily tipped over during cooking unless a second person held it down.

Initial Stability Designs

- Stones to provide stability
- Tripod protruding from wind collar
- Swinging hinges locking the pot in place
- Reinforced cross-bars running through the bottom

Final Design

- Stakes attached to stove lock into the ground
- Stakes positioned so stove cannot be operated without driving them into ground
- Original and modified designs tested with the use of mechanical spring balance
- •Results: Stakes make the stove over 10x more stable!

Future Work

- Design stove for mass production locally in Darfur -- June 2006
- Cookstove Dissemination CHF: Plan to produce 10,000 stoves this year
- 40,000 in the next year, ultimately 300,000
- New Funding Sources being explored: Bears Breaking Boundaries, Chancellor's office, Philanthropic Foundations

To donate - go to http://darfurstoves.lbl.gov

